DEFINITION: algebraic multiplicity of the eigenvalue A is the multiplicity of A as a root of the
characteristic equation p(A) = 0.

DEFINITION: geometric multiplicity of the eigenvalue A is the number of linearly independent
eigenvectors associated with A,
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(a) Find p(A) and determine the algebraic multiplicity of each the eigenvalue.
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(b) Determine the geometric multiplicity of each eigenvalue. a=3















































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































DEFINITION: Let A be an nxn matrix. If A has n eigenvectors vy, %, - - - , ¥, satisfying det[t) vy --- ¥,] #
0, we say that A has a full set of eigenvectors.

DEFINITION: Let A be an n x n matrix. If A has at least one eigenvalue A with GM(\) < AM(A), this
is A cannot have a full set of eigenvectors, then we call A DEFECTIVE.

Thm 3. Let A be an n x n matrix. Let Ay, A2, -+, A\x be the distinct eigenvalues of A. Then,

A has a full set of eizenvectors < AM(A:) = GM(A:) foreach i=1.2.--- .k

Sec 4.7: Defective Matrices (geometric multiplicity < algebraic multiplicity)
. . =, 2 -1 |=.
What is the general solution to Y ' = 4 Y 7

Algorithm: Only for 2 x 2 matrices.
Let A be a 2 x 2 matrix that has only one (repeated) eigenvalue whose geometric multiplicity is 1. Let A be
this eigenvalue. In this case, do the following steps.
(1) Find the eigenvector ¥ associated to the eigenvalue A.
(2) Find a solution to the system
(A= X)) -w=17.

(3) A fundamental matrix for Y ' = A-Y is ®(t) = [(,bl(t) c;ﬁg(t)] where ¢;(t) and ¢2(t) are given by

P1(t) =eMT  and  @o(t) = teMi + M.
Ex1. Solve the i.v.p.
re[2 ) v 3]
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Thm 2 [Recognizing a Fundamental Matrix] Suppose A (n x n matrix) has a full set of eigenvectors.

That is, if
A1 provides: ¥y, Uyga, Ui, ---U1,, linearly independent eigenvector(s)

Ag provides: U4, Taa, Uag,---Ta,, linearly independent eigenvector(s)

Ak provides: ¥, Tk, Tk3. - Tk, linearly independent eigenvector(s),
where r; = GM(A;) = AM()\;) foreach i =1,2,..., k. Then, the matrix

¥ 1

A

B(t) = [MTyy eMTpy o M, e M MTey e M,

is a fundamental matrix for Y ' = A- Y.

Important remarks:

e k is the number of distinct eigenvalues of the matrix A. The number k may not he n.

e Theorem 1 is the particular case when k = n.



