DEFINITION: algebraic multiplicity of the eigenvalue λ is the multiplicity of λ as a root of the characteristic equation $p(\lambda) = 0$.

DEFINITION: geometric multiplicity of the eigenvalue λ is the number of linearly independent eigenvectors associated with λ .

Ex Consider
$$Q = \begin{bmatrix} 4 & 0 & -2 \\ 0 & 3 & 0 \\ 1 & 0 & 1 \end{bmatrix}$$
.

(a) Find $p(\lambda)$ and determine the algebraic multiplicity of each the eigenvalue.

$$P(\lambda) = \det \begin{pmatrix} 4-\lambda & 0 & -2 \\ 0 & 3-\lambda & 0 \end{pmatrix} = \begin{pmatrix} 4-\lambda \end{pmatrix} \left[(3-\lambda)(1-\lambda) \right] - 0 + 2 \left[(3-\lambda) \right]$$

$$P(\lambda) = (3-\lambda) \left((4-\lambda)(1-\lambda) + 2 \right)$$

$$= Alegatoric Multipolarity = 2$$

$$= (3-\lambda)^{2} (2-\lambda)$$

$$\Rightarrow Algebrai Multipolarity = 2$$

$$\Rightarrow Algebrai Multipolarity = 2$$

$$\Rightarrow V_{1} = 2V_{3}$$

$$V_{2} = 0 \Rightarrow V_{1} = 2V_{3}$$

$$V_{3} = 0 \Rightarrow V_{4} = 2V_{3}$$

For λ^{-3} Solve $\begin{pmatrix} 1 & 0 & -2 \\ 0 & 0 & 0 \\ 1 & 0 & -2 \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \Leftrightarrow V_1 - 2V_3 = 0 \Rightarrow V_1 = 2V_3$ $V_2 \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} + V_3 \begin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 2U_3 \\ V_2 \\ V_3 \end{pmatrix}$

(b) Determine the geometric multiplicity of each eigenvalue. 2=3

For
$$23^{-2} \Rightarrow U_3$$

the general solution is
$$\frac{1}{y}(t) = C_1 e^{3t} \binom{0}{0} + C_2 e^{3t} \binom{2}{0} + C_3 e^{2t} U_3$$
Find U3 as into same method as above prehad as above

DEFINITION: Let A be an $n \times n$ matrix. If A has n eigenvectors $\vec{v}_1, \vec{v}_2, \dots, \vec{v}_n$ satisfying $\det[\vec{v}_1 \ \vec{v}_2 \ \dots \ \vec{v}_n] \neq 0$ 0, we say that A has a full set of eigenvectors.

DEFINITION: Let A be an $n \times n$ matrix. If A has at least one eigenvalue λ with $GM(\lambda) < AM(\lambda)$, this is A cannot have a full set of eigenvectors, then we call A **DEFECTIVE**.

Thm 3. Let A be an $n \times n$ matrix. Let $\lambda_1, \lambda_2, \dots, \lambda_k$ be the distinct eigenvalues of A. Then,

A has a full set of eigenvectors $\Leftrightarrow AM(\lambda_i) = GM(\lambda_i)$ for each $i = 1, 2, \dots, k$

Sec 4.7: Defective Matrices (geometric multiplicity < algebraic multiplicity)

What is the general solution to $\vec{Y}' = \begin{bmatrix} 2 & -1 \\ 1 & 4 \end{bmatrix} \vec{Y}$?

Algorithm: Only for 2×2 matrices.

Let A be a 2×2 matrix that has only one (repeated) eigenvalue whose geometric multiplicity is 1. Let λ be this eigenvalue. In this case, do the following steps.

- (1) Find the eigenvector \vec{v} associated to the eigenvalue λ .
- (2) Find a solution to the system

$$(A - \lambda I) \cdot \vec{w} = \vec{v}.$$

(3) A fundamental matrix for $\vec{Y}' = A \cdot \vec{Y}$ is $\Phi(t) = \begin{bmatrix} \phi_1(t) & \phi_2(t) \end{bmatrix}$ where $\phi_1(t)$ and $\phi_2(t)$ are given by $\phi_1(t) = \mathbf{e}^{\lambda t} \vec{v}$ and $\phi_2(t) = t \mathbf{e}^{\lambda t} \vec{v} + \mathbf{e}^{\lambda t} \vec{w}$.

Ex1. Solve the i.v.p.

I. Solve the i.v.p.

$$\vec{Y}' = \begin{bmatrix} 2 & -1 \\ 1 & 4 \end{bmatrix} \vec{Y}, \quad \vec{Y}(0) = \begin{bmatrix} 1 \\ 3 \end{bmatrix}$$

$$P(\lambda) = \begin{bmatrix} 2 - \lambda & -1 \\ 1 & 4 \end{bmatrix} z \quad (2 - \lambda) (4 - \lambda) \neq 1$$

$$\lambda^2 - 6\lambda \neq 9 = (\lambda - 3)^2 \Rightarrow \lambda M(3) = 2$$

$$GM(3) \quad \text{Solve} \quad \begin{pmatrix} -1 & -1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} U_1 \\ U_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \quad \begin{array}{c} U_1 + U_2 = 0 \\ U_1 = -U_2 \end{array} \quad \begin{pmatrix} -1 \\ 1 \end{pmatrix}$$

Solution:
$$Ex$$
, Z

$$y' = Ay$$

$$A = \begin{bmatrix} 6 & 1 \\ -1 & 4 \end{bmatrix}$$

$$P(\lambda) = \det \begin{pmatrix} 6-\lambda & 1 \\ -1 & 4-\lambda \end{pmatrix} = \begin{pmatrix} 6-\lambda / (4-\lambda)+1 = (\lambda-5)^2 \\ AM(5) = 2 & \text{double not of } P(\lambda)$$
Eigen vertices
$$Solve \begin{pmatrix} 1 & 1 \\ -1 & -1 \end{pmatrix} \begin{pmatrix} U_1 \\ U_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \Rightarrow U_1 = -U_2 \begin{pmatrix} 1 \\ -1 \end{pmatrix} GM(5) = 1$$

$$G(AM(5) = 1)$$

Sulve for generalisal Bisnverter wis

Solve for generalised Disroveder will

$$\begin{pmatrix}
1 & 1 \\
-1 & -1
\end{pmatrix}
\begin{pmatrix}
\omega_1 \\
\omega_2
\end{pmatrix} = \begin{pmatrix}
1 \\
-1
\end{pmatrix} = \omega_1 + \omega_2 = 1 \Rightarrow \omega_1 = 1 - \omega_2 \Rightarrow \omega = \begin{pmatrix}
1 - \omega_2 \\
\omega_3
\end{pmatrix} \Rightarrow \frac{1}{2} = \begin{pmatrix}
1 - \omega_2 \\
\omega_4
\end{pmatrix} \Rightarrow \frac{1}{2} = \begin{pmatrix}
1 - \omega_2 \\
\omega_4
\end{pmatrix} \Rightarrow \frac{1}{2} = \begin{pmatrix}
1 - \omega_2 \\
\omega_4
\end{pmatrix} \Rightarrow \frac{1}{2} = \begin{pmatrix}
1 - \omega_2 \\
\omega_4
\end{pmatrix} \Rightarrow \frac{1}{2} = \begin{pmatrix}
1 - \omega_2 \\
\omega_4
\end{pmatrix} \Rightarrow \frac{1}{2} = \begin{pmatrix}
1 - \omega_2 \\
\omega_4
\end{pmatrix} \Rightarrow \frac{1}{2} = \begin{pmatrix}
1 - \omega_2 \\
\omega_4
\end{pmatrix} \Rightarrow \frac{1}{2} = \begin{pmatrix}
1 - \omega_2 \\
\omega_4
\end{pmatrix} \Rightarrow \frac{1}{2} = \begin{pmatrix}
1 - \omega_2 \\
\omega_4
\end{pmatrix} \Rightarrow \frac{1}{2} = \begin{pmatrix}
1 - \omega_2 \\
\omega_4
\end{pmatrix} \Rightarrow \frac{1}{2} = \begin{pmatrix}
1 - \omega_2 \\
\omega_4
\end{pmatrix} \Rightarrow \frac{1}{2} = \begin{pmatrix}
1 - \omega_2 \\
\omega_4
\end{pmatrix} \Rightarrow \frac{1}{2} = \begin{pmatrix}
1 - \omega_4 \\
\omega_4
\end{pmatrix} \Rightarrow \frac{1}{2} = \begin{pmatrix}
1 - \omega_4 \\
\omega_4
\end{pmatrix} \Rightarrow \frac{1}{2} = \begin{pmatrix}
1 - \omega_4 \\
\omega_4
\end{pmatrix} \Rightarrow \frac{1}{2} = \begin{pmatrix}
1 - \omega_4 \\
\omega_4
\end{pmatrix} \Rightarrow \frac{1}{2} = \begin{pmatrix}
1 - \omega_4 \\
\omega_4
\end{pmatrix} \Rightarrow \frac{1}{2} = \begin{pmatrix}
1 - \omega_4 \\
\omega_4
\end{pmatrix} \Rightarrow \frac{1}{2} = \begin{pmatrix}
1 - \omega_4 \\
\omega_4
\end{pmatrix} \Rightarrow \frac{1}{2} = \begin{pmatrix}
1 - \omega_4 \\
\omega_4
\end{pmatrix} \Rightarrow \frac{1}{2} = \begin{pmatrix}
1 - \omega_4 \\
\omega_4
\end{pmatrix} \Rightarrow \frac{1}{2} = \begin{pmatrix}
1 - \omega_4 \\
\omega_4
\end{pmatrix} \Rightarrow \frac{1}{2} = \begin{pmatrix}
1 - \omega_4 \\
\omega_4
\end{pmatrix} \Rightarrow \frac{1}{2} = \begin{pmatrix}
1 - \omega_4 \\
\omega_4
\end{pmatrix} \Rightarrow \frac{1}{2} = \begin{pmatrix}
1 - \omega_4 \\
\omega_4
\end{pmatrix} \Rightarrow \frac{1}{2} = \begin{pmatrix}
1 - \omega_4 \\
\omega_4
\end{pmatrix} \Rightarrow \frac{1}{2} = \begin{pmatrix}
1 - \omega_4 \\
\omega_4
\end{pmatrix} \Rightarrow \frac{1}{2} = \begin{pmatrix}
1 - \omega_4 \\
\omega_4
\end{pmatrix} \Rightarrow \frac{1}{2} = \begin{pmatrix}
1 - \omega_4 \\
\omega_4
\end{pmatrix} \Rightarrow \frac{1}{2} = \begin{pmatrix}
1 - \omega_4 \\
\omega_4
\end{pmatrix} \Rightarrow \frac{1}{2} = \begin{pmatrix}
1 - \omega_4 \\
\omega_4
\end{pmatrix} \Rightarrow \frac{1}{2} = \begin{pmatrix}
1 - \omega_4 \\
\omega_4
\end{pmatrix} \Rightarrow \frac{1}{2} = \begin{pmatrix}
1 - \omega_4 \\
\omega_4
\end{pmatrix} \Rightarrow \frac{1}{2} = \begin{pmatrix}
1 - \omega_4 \\
\omega_4
\end{pmatrix} \Rightarrow \frac{1}{2} = \begin{pmatrix}
1 - \omega_4 \\
\omega_4
\end{pmatrix} \Rightarrow \frac{1}{2} = \begin{pmatrix}
1 - \omega_4 \\
\omega_4
\end{pmatrix} \Rightarrow \frac{1}{2} = \begin{pmatrix}
1 - \omega_4 \\
\omega_4
\end{pmatrix} \Rightarrow \frac{1}{2} = \begin{pmatrix}
1 - \omega_4 \\
\omega_4
\end{pmatrix} \Rightarrow \frac{1}{2} = \begin{pmatrix}
1 - \omega_4 \\
\omega_4
\end{pmatrix} \Rightarrow \frac{1}{2} = \begin{pmatrix}
1 - \omega_4 \\
\omega_4
\end{pmatrix} \Rightarrow \frac{1}{2} = \begin{pmatrix}
1 - \omega_4 \\
\omega_4
\end{pmatrix} \Rightarrow \frac{1}{2} = \begin{pmatrix}
1 - \omega_4 \\
\omega_4
\end{pmatrix} \Rightarrow \frac{1}{2} = \begin{pmatrix}
1 - \omega_4 \\
\omega_4
\end{pmatrix} \Rightarrow \frac{1}{2} = \begin{pmatrix}
1 - \omega_4 \\
\omega_4
\end{pmatrix} \Rightarrow \frac{1}{2} = \begin{pmatrix}
1 - \omega_4 \\
\omega_4
\end{pmatrix} \Rightarrow \frac{1}{2} = \begin{pmatrix}
1 - \omega_4 \\
\omega_4
\end{pmatrix} \Rightarrow \frac{1}{2} = \begin{pmatrix}
1 - \omega_4 \\
\omega_4
\end{pmatrix} \Rightarrow \frac{1}{2} = \begin{pmatrix}
1 - \omega_4 \\
\omega_4
\end{pmatrix} \Rightarrow \frac{1}{2} = \begin{pmatrix}
1 - \omega_4 \\
\omega_4
\end{pmatrix} \Rightarrow \frac{1}{2} = \begin{pmatrix}
1 - \omega_4 \\
\omega_4
\end{pmatrix} \Rightarrow \frac{1}{2} = \begin{pmatrix}
1 - \omega_4 \\
\omega_4
\end{pmatrix} \Rightarrow \frac{1}{2} = \begin{pmatrix}
1 - \omega_4 \\
\omega_4
\end{pmatrix} \Rightarrow \frac{1}{2} = \begin{pmatrix}
1 - \omega_4 \\
\omega_4
\end{pmatrix} \Rightarrow \frac{1}{2} = \begin{pmatrix}
1 - \omega_4 \\
\omega_4
\end{pmatrix} \Rightarrow \frac{1}{2} = \begin{pmatrix}
1 - \omega_4 \\
\omega_4
\end{pmatrix} \Rightarrow \frac{1}{2} = \begin{pmatrix}
1 - \omega_4 \\
\omega_4
\end{pmatrix} \Rightarrow \frac{1}{2} = \begin{pmatrix}
1 - \omega_4 \\
\omega_4
\end{pmatrix} \Rightarrow \frac{1}{2} = \begin{pmatrix}
1 - \omega_4 \\
\omega_4
\end{pmatrix} \Rightarrow \frac{1}{2} = \begin{pmatrix}
1 - \omega_4 \\
\omega_4
\end{pmatrix} \Rightarrow \frac{1}{2} = \begin{pmatrix}
1 - \omega_4 \\
\omega_4
\end{pmatrix} \Rightarrow \frac{1}{2} = \begin{pmatrix}
1 - \omega_4 \\
\omega_4
\end{pmatrix} \Rightarrow \frac{1}{2} = \begin{pmatrix}
1 - \omega_4 \\
\omega_4
\end{pmatrix} \Rightarrow \frac{1}{2} = \begin{pmatrix}
1 - \omega_4 \\
\omega_4
\end{pmatrix} \Rightarrow \frac{1}{2} =$$

$$\begin{pmatrix} 1 \\ 0 \end{pmatrix} = \vec{y}(0) = \begin{pmatrix} C_1 + C_2 \\ -C_1 \end{pmatrix} \qquad C_2 = 1$$

Thm 2 [Recognizing a Fundamental Matrix] Suppose A ($n \times n$ matrix) has a full set of eigenvectors.

That is, if

 λ_1 provides: $\vec{v}_{1,1}, \ \vec{v}_{1,2}, \ \vec{v}_{1,3}, \cdots \vec{v}_{1,r_1}$ linearly independent eigenvector(s)

 $\lambda_{\mathbf{2}} \quad \text{provides:} \quad \vec{v}_{\mathbf{2},1}, \ \vec{v}_{\mathbf{2},2}, \ \vec{v}_{\mathbf{2},3}, \cdots \vec{v}_{\mathbf{2},r_2} \quad \text{linearly independent eigenvector}(\mathbf{s})$

. . .

 $\lambda_{\mathbf{k}}$ provides: $\vec{v}_{\mathbf{k},1}, \ \vec{v}_{\mathbf{k},2}, \ \vec{v}_{\mathbf{k},3}, \cdots \vec{v}_{\mathbf{k},r_k}$ linearly independent eigenvector(s),

where $r_i = \mathrm{GM}(\lambda_i) = \mathrm{AM}(\lambda_i)$ for each $i = 1, 2, \dots, k$. Then, the matrix

$$\Phi(t) = \begin{bmatrix} e^{\lambda_1 t} \vec{v}_{1,1} & e^{\lambda_1 t} \vec{v}_{1,2} & \cdots & e^{\lambda_1 t} \vec{v}_{1,r_1} & \cdots & e^{\lambda_k t} \vec{v}_{k,1} & e^{\lambda_k t} \vec{v}_{k,2} & \cdots & e^{\lambda_k t} \vec{v}_{k,r_k} \end{bmatrix}$$

is a fundamental matrix for \vec{Y} ' = $A \cdot \vec{Y}$.

Important remarks:

- k is the number of distinct eigenvalues of the matrix A. The number k may not be n.
- Theorem 1 is the particular case when k = n.